Independence of contour and biological-motion cues for motion-defined animal shapes.

نویسندگان

  • A Bellefeuille
  • J Faubert
چکیده

The effects of different kinds of cues on the perception of second-order motion-defined animal shapes were assessed. In the first experiment discrimination thresholds for motion-defined animals without biological motion (non-BioM) were compared with motion-defined animals with biological motion (BioM). The results show no significant difference between the two conditions, suggesting that BioM does not interact with simple contour motion. In order to isolate the relative strength and interaction between the motion cues a second experiment was conducted where four conditions were used. The first condition consisted of animal contours with non-BioM, the second condition consisted of animal contours with BioM, the third condition was composed of dots present at the joints of the animals with non-BioM, and the fourth condition was composed of dots with BioM. In all cases the animal shapes traveled across the screen for a given number of frames. As in the first experiment, the results of the second study show no interaction between cues. Furthermore, the data show that the thresholds are similar whether BioM or contour cues are presented. The only condition which is significantly different is the condition without either contour or BioM cues. It is concluded that the form representation generated from these cues in motion-defined animal shapes consists of separate mechanisms which appear equally efficient for discrimination and which do not interact with one another.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Separate neural pathways for contour and biological-motion cues in motion-defined animal shapes.

To determine whether contour and biological motion (BM) cues for motion-defined shapes are subserved by two separate mechanisms, we used PET to measure regional cerebral blood flow in nine human subjects. Subjects were scanned in the following four conditions: (1) contour-defined animals with natural movements (running), (2) motion-defined animals in which the contours were removed and dots wer...

متن کامل

Title: Motion-defined Contour Processing in Early Visual Cortex. Animal Preparation for the Recording Experiments Was Done by Amol Gharat and Curtis Baker, Introduction

21 From our daily experience it is very clear that relative motion cues can contribute to correctly 22 identifying object boundaries and perceiving depth. Motion-defined contours are not only 23 generated by the motion of objects in a scene, but also by the movement of an observer’s head 24 and body (motion parallax). However the neural mechanism involved in detecting these contours 25 is still...

متن کامل

The integration of colour and motion by the human visual brain.

Objects in the visual scene are defined by different cues such as colour and motion. Through the integration of these cues the visual system is able to utilize different sources of information, thus enhancing its ability to discriminate objects from their backgrounds. In the following experiments, we investigate the neural mechanisms of cue integration in the human. We show, using functional ma...

متن کامل

Motion-boundary illusions and their regularization.

Humans use various cues to understand the structure of the world from images. One such cue is the contours of an object formed by occlusion or from surface discontinuities. It is known that contours in the image of an object provide various amounts of information about the shape of the object in view, depending on assumptions that the observer makes. Another powerful cue is motion. The ability ...

متن کامل

Characterizing motion contour detection mechanisms and equivalent mechanisms in the luminance domain.

Motion-defined contours are ecologically important cues to object boundaries in complex fields of optic flow. We designed a novel stimulus in which the velocities of randomly positioned dots are defined by a 2D Gabor function, resulting in a motion-defined pattern with a clear orientation. We found that the number of correct responses in a vertical/horizontal orientation discrimination task inc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Perception

دوره 27 2  شماره 

صفحات  -

تاریخ انتشار 1998